Principle of Operation
As the signal current from the controller increases, the plate spring of the torque motor works as a pivot. As the armature receives the rotary torque in the counterclockwise direction, the counter-weight is pushed to the left, the clearance between the nozzle and the flapper will increase, and the back pressure of the nozzle will decrease. As a result, the exhaust valve of the pilot valve moves to the right, and the output pressure of OUT1 increases (as OUT2 decreases) to move the cylinder actuator. The movement of the actuator in turn rotates the feedback shaft, and the feedback spring lengths or shortens by the movement of the feedback cam connected to the feedback shaft. The actuator stays in the position where the spring force is balanced with the force generated by the input current in the torque motor. The compensation spring is for direct feedback of the motion of the exhaust valve and is connected to the counter weight to enhance the stability of the loop. The zero point is adjusted by changing the zero adjustment spring tension.

Specification

<table>
<thead>
<tr>
<th></th>
<th>EPR Rotary Type (Cam Feedback)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>Input Signal</td>
<td>4~20mA 24V DC (Note. 1)</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>235±15Ω</td>
</tr>
<tr>
<td>Air Supply Pressure</td>
<td>Max. 100 PSI</td>
</tr>
<tr>
<td>Standard Stroke</td>
<td>60 ° ~ 100° (Note. 2)</td>
</tr>
<tr>
<td>Air Piping Connection</td>
<td>¼” NPT</td>
</tr>
<tr>
<td>Conduit Connection</td>
<td>Exmd II BT6</td>
</tr>
<tr>
<td>Explosion-Proof Classification</td>
<td>Exmd II BT6</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>-4 ~ 158 Deg F</td>
</tr>
<tr>
<td>Pressure Gauge</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Output Characteristics</td>
<td>Linear</td>
</tr>
<tr>
<td>Linearity</td>
<td>Within ±1.5 % F.S</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Within 0.5 % F.S</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>Within 1.0% F.S</td>
</tr>
<tr>
<td>Repeatability</td>
<td>Within ±0.5 % F.S</td>
</tr>
<tr>
<td>Air Consumption</td>
<td>0.18 CFM (Sup. 20PSI)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Aluminum Die Casting Body</td>
</tr>
<tr>
<td>Weight</td>
<td>6.40 Lbs (with a terminal box)</td>
</tr>
</tbody>
</table>

Note: 1) 1/2 split range can be adjusted
2) Stroke can be adjusted to 0 ° ~ 60° or 0 ° ~ 100°
- **Standard Mounting (Fork Lever Type)**
 - Mount the bracket to the actuator. The brackets have been designed for actuators with the 80 X 30mm NAMUR accessory pattern. For the 130 X 30mm pattern, the block type bracket is available.

 ![Bracket (80 X 30)](image1)
 ![Block Type Bracket (130 X 30)](image2)

 - Mount the fork lever “B” to the actuator and thread it into the actuator first before mounting the positioner and the bracket to the actuator.

 - Once the bracket has been mounted to the actuator, mount the positioner to the bracket with the bolts (2-M8 or 3-M8). Be sure that the feedback lever (feedback lever shaft “A” + fork lever “B”) is in perfect alignment with a rotary actuator output shaft. The spring pin of the feedback lever shaft “A” acts as a guide and should be placed in the orifice of the fork lever “B”. Please note that linearity and hysteresis will suffer if these alignment and placement are not correct.

- **Direct Mounting (NAMUR Type, see the right picture)**

 ![NAMUR Type Bracket (80 X 30 X 20)](image3)
 ![NAMUR Type Bracket (130 X 30 X 30)](image4)

- **Cam and Indicator Adjustment**
 - Loosen the flange nut on the cam. Match the part of the cam with "0" marked on it with the center of bearing as shown to the right. The span adjusting arm unit should now be aligned.

 - Tighten the flange nut of the cam after setting the cam.

 - After cam installation, proceed to adjust zero and span. Once this is complete, secure the indicator with the bolt (M6) to the feedback shaft according to the actuator type (RA or DA) as shown below. The position for the indicator should be arranged in the scale (0-90 degrees) shown on the cover.

 ![Counter clockwise](image5)
 ![Clockwise](image6)

 Be sure that RA (reverse acting) is the standard factory setting.
Span and Zero Adjustment

- Check all air connections.
- Set input signal to 4mA (24 VDC) while positioner is at the 0% or stroke starting point. Turn the zero adjustment knob clockwise or counter clockwise to set the zero position.
- Check the stroke of actuator by setting the signal to 20mA at 24 VDC. If the stroke does not meet 100%, turn the span adjustment screw clockwise or counter clockwise until 100% is reached.
- Set input signal back to 4mA (24 VDC) and adjust the zero adjustment screw until starting point is reached.
- Repeat the process until the desired set point is reached.

Pilot Valve Seat Adjuster

The seat adjuster (sensitivity adjusting screw) located on the pilot valve is used to adjust the positioner for double-acting actuators. Normally, no adjustment is required.

When the sensitivity is not optimal, rotate this screw clockwise. If there is hunting, rotate the screw counterclockwise. For smaller actuators, it might be necessary to insert the small pilot valve orifice inserts if adjusting the seat does not improve performance.

Auto / Manual Operation

For manual operation using an external air regulator, set the Auto / Manual switch located on the pilot valve to M. This will bypass the 4~20mA input signal.
Air Connections

Direct Acting (DA)

As input signal increases, Actuator stem rotates clockwise

Reverse Acting (RA)

As input signal increases, Actuator stem rotates counter-clockwise

Wire Diagrams

Specifications - Current Output
Power Supply Rating: 5.5 – 30 VDC loop power
Recommended Power Supply: 24VDC
Output Signal: 4 – 20 mA
Operating Temperature: -4º to 158º F
Load Impedance: 0 – 600 ohms
Max. Output: 30 mA DC
Linearity: ±1.0 %
Hysteresis: 1.0% of full scale
Repeatability: ±0.5 % of full scale
Adjustment: Zero and Span in Terminal Box

Specifications - Limit Switches
Contacts: SPDT Form C
AC Rating: 16 A, ½ HP, 125 / 250 VAC
DC Rating: 0.6 A 125VDC / 0.3 A 250VDC
Adjustment: cams with set screws
Optional Restricted Pilot Valve Orifice

WARNING: Before removing the pilot valve, be sure to disconnect the positioner from the signal and compressed air source.

For improved control using smaller actuators, a restricted pilot valve orifice kit is included with the positioner. To install, the pilot valve must be removed from the positioner. Remove the four screws holding the pilot to the positioner body. As you remove the valve, be sure to hold the compensation spring (see page 2) in place. Flip the valve so the bottom faces you. Remove the o-rings from the out 1 and out 2 ports (as shown in the diagram at right). Place the orifice plates in their place with new o-rings above them, and re-install the pilot valve, making sure the compensation spring is back in place. The positioner is now set up for smaller actuators.

Troubleshooting Tips

Hunting
- If your actuator is small, install orifice restrictions in ports 1 and 2 of the pilot valve. Then the control valve moves slow.
- The nozzle might be clogged. Take the metal wire located in the positioner cover and clean the nozzle.

Poor Linearity
- Air supply might be unstable - check or install a pressure regulator.

- Check Zero and Span adjustments
- Loose feedback lever - tighten feedback lever

Poor Hysteresis
- Loose mounting of the actuator to the positioner - tighten the mounting bracket.
- Adjust the seat, using the seat adjuster (double acting actuators only)
A-T Controls product, when properly selected, is designed to perform its intended function safely during its useful life. However, the purchaser or user of A-T Controls products should be aware that A-T Controls products might be used in numerous applications under a wide variety of industrial service conditions. Although A-T Controls can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser / user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of A-T Controls products. The user should read and understand the installation operation maintenance (IOM) instructions included with the product, and train its employees and contractors in the safe use of A-T Controls products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only. Because A-T Controls is continually improving and upgrading its product design, the specifications, dimensions and information contained in this literature are subject to change without notice. Should any question arise concerning these specifications, the purchaser/user should contact A-T Controls.

For product specifications go to http://download.a-tcontrols.com/

A-T Controls, Inc. • 9955 International Boulevard, Cincinnati, OH 45246 • Phone: (513) 530-5175 • Fax: (513) 247-5462 • www.atcontrols.com