

# **Installation and Operation Manual**

TMC4 Modbus Module Single and Dual Channel Modbus RTU, Single Port ModbusTCP

# 1. Overview

The Triac Modbus modules are a plug-in option module for use with the TMC4 controller providing communication with the TMC4 control card through Modbus RTU or ModbusTCP protocol. The TCP module, item TMC-4C006-002, is available with a single port connection. The RTU module is available in both a single isolated channel, item TMC-4C005-001, and dual isolated channel, item TMC-4C005-003. The dual channel module supports communication via two independent ports under one ID. This dual channel configuration is useful for operating physically redundant networks. Wiring, communication parameters, and best practices are all common between the single and dual channel module operation.

# 1.1. Features

**RTU Modules** 

- Addresses from 1 to 246
- None, Odd or Even parity
- 9600, 19.2k, 57.6k, 115.2k baud rates

**TCP** Module

- IP parameters configurable via TMC4 menus or by terminal program with on-board USB connection
- Supports up to 8 concurrent connections.

# 1.2. Installation

The TMC4 Modbus module is installed in the TMC4 control board option module slot using (2)  $4-40 \times 1/4$ " screws. Insert card edge in the mini PCI express connector and rotate module flat to secure with the screws.









# 1.3. Wiring

The wiring pinout for the RTU single channel and RTU dual channel module is shown below. The TCP module only requires RJ45 connection.







# 2. Network

Modbus RTU modules communicate over RS-485 network. For best results using either of the RTU modules, a RS-485 cable with recommended  $120\Omega$  characteristic impedance should be used for network wiring. For the dual channel RTU module, separate RS-485 communication cables must be used for both Network 1 and Network 2 as shown. For single channel RTU module, only Network 1 cabling is required.

A 120Ω termination resistance at master and last slave node on the network is required for best performance. Maximum number of nodes per multi-drop network should be limited to 32 nodes. If greater than 32 nodes are required on a network, repeaters should be utilized.

Polling nodes simultaneously on both ports for a dual channel network should be avoided. A minimum 500ms polling rate and delay of 20ms between polls of the same device on both channels is recommended.



Maximum 32 nodes per multi-drop network

ModbusTCP module implements the Modbus protocol onto a TCP/IP based communication. TCP module should be wired using standard Ethernet network components (switch etc.) and IT practices.

# 2.1. RTU Cable Length

The theoretical maximum cable length for RS-485 network is 1.2 km (3900 feet). This also includes the length of any network stubs used. Maximum cable length decreases as the data rate increases as shown below. Other considerations may decrease actual maximum cable length, such as characteristic impedance mismatch of cable to master.







# 2.2. Network Topology

The Modbus RTU module should be wired in either a daisy chain topology, or a bus/backbone with stubs for best results. If backbone with stubs topology is used, the length of stubs should be kept as short as possible. Star, ring, or combinations thereof, should be avoided. ModbusTCP module can be connected using any topology compatible with Ethernet networks such as star, ring, or combination thereof.







# 3. Setup

To operate with Modbus commands, the TMC4 controller must first be configured for Modbus RTU or ModbusTCP communication. Refer to TMC4 IOM for details.

- Set Command Type in the COMMAND CONFIG submenu to Comms.
- Set *Position Type* in the **POSITION CONFIG** submenu to either Limit Switch or Potentiometer depending on if on/off actuation or proportional/modulating actuation.
  - If operating as Potentiometer positioning, program the 0% and 100% positions in the *Calibrate Close* and *Calibrate Open* setting.
- Set *Communication Type* in the **COMMS CONFIG** submenu to Modbus RTU or ModbusTCP. Set communication settings such as unit address, baud rate and parity for RTU modules, and IP address, subnet mask and gateway for TCP modules in the **COMMS CONFIG** submenu.

NOTE: Cycle power to the TMC4 after communication settings are changed to ensure connection.

# 4. Operation

# 4.1. Limit Switch Positioning Operation

When operating with limit switches for on/off or two position control, the TMC4 *Position Type* setting in the **POSITION CONFIG** submenu should be set to Limit Switch. When operating in this mode, Bit 1 and Bit 2 in Register 40009 control the actuator direction and movement. The actuator can also be controlled by writing specific values to Register 40010. Bits 1 - 4 in Register 40001, provide the feedback information about the travel direction and end of travel position of the actuator. Operating details are provided below.

| OPERA<br>Registe | OPERATION<br>Register 40009, Action Bits/Flags 2 |                                                   |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|--|--|
| Bit 2            | Bit 1                                            | Description                                       |  |  |  |  |  |  |  |  |
| 0                | х                                                | De-energize motor outputs<br>and stop actuator.   |  |  |  |  |  |  |  |  |
| 1                | 0                                                | Energize motor outputs and<br>drive actuator CW.  |  |  |  |  |  |  |  |  |
| 1                | 1                                                | Energize motor outputs and<br>drive actuator CCW. |  |  |  |  |  |  |  |  |

| OPERATION                        |                                                  |  |  |  |  |  |  |  |
|----------------------------------|--------------------------------------------------|--|--|--|--|--|--|--|
| Register 40010, Command Position |                                                  |  |  |  |  |  |  |  |
| Value                            | Description                                      |  |  |  |  |  |  |  |
| 0                                | Energize motor outputs and<br>drive actuator CW. |  |  |  |  |  |  |  |
| 500                              | De-energize motor outputs and stop actuator.     |  |  |  |  |  |  |  |
| 1000                             | Energize motor outputs and drive actuator CCW.   |  |  |  |  |  |  |  |

| FEEDBACK<br>Register 40001, Status Flags 1 |       |  |       |       |                |          |  |  |  |  |
|--------------------------------------------|-------|--|-------|-------|----------------|----------|--|--|--|--|
| Position                                   |       |  | Move  | ement | Descrip        | otion    |  |  |  |  |
| Bit 4                                      | Bit 3 |  | Bit 2 | Bit 1 | Position       | Movement |  |  |  |  |
| 0                                          | 0     |  | 0     | 0     | Between limits | Stopped  |  |  |  |  |
| 0                                          | 0     |  | 0     | 1     | Between limits | CCW      |  |  |  |  |
| 0                                          | 0     |  | 1     | 0     | Between limits | CW       |  |  |  |  |
| 0                                          | 0     |  | 1     | 1     | ?              | ?        |  |  |  |  |
| 0                                          | 1     |  | 0     | 0     | CCW limit      | Stopped  |  |  |  |  |
| 0                                          | 1     |  | 0     | 1     | ?              | ?        |  |  |  |  |
| 0                                          | 1     |  | 1     | 0     | CCW limit      | CW       |  |  |  |  |
| 0                                          | 1     |  | 1     | 1     | ???            |          |  |  |  |  |
| 1                                          | 0     |  | 0     | 0     | CW limit       | Stopped  |  |  |  |  |
| 1                                          | 0     |  | 0     | 1     | CW limit       | CCW      |  |  |  |  |

(1) This state will be present immediately when reversing direction until the position cam disengages the position limit switch. If this state persists, it may indicate jam or obstruction condition.

Note that even though the motor stops when the destination travel limit switch is closed, the motor outputs of the control board remain energized until a stop command is written to Register 40009 or 40010.

In Register 40009, Bit 1 establishes the direction of actuator travel and Bit 2 energizes or de-energizes the motor output corresponding to the direction determined by Bit 1.

If Bit 1 = 0, the actuator is set to move in the CW direction. If Bit 1 = 1, the actuator is set to move in the CCW direction.





If Bit 2 = 0, the motor output is not energized. If Bit 2 = 1, the CW motor output is energized when Bit 1 = 0 and the CCW motor output is energized when Bit 1 = 1. Unless Bit 2 is cleared, the actuator will continue to move in the specified direction until the corresponding end of travel limit switch closes.

It is acceptable to change direction with Bit 1 while maintaining Bit 2 = 1. If the direction is changed while the actuator is moving, a short delay occurs before the actuator begins moving in the opposite direction. Writing values into Register 40010 will automatically set Bit 1 and Bit 2 in Register 40009 according to the action specified.

**CAUTION!** When writing to Bit 1 and Bit 2 of Register 40009, be careful not to change the other register bits.

In Register 40001, Bit 1 and Bit 2 indicate the direction of travel. Bit 3 and Bit 4 indicate if the actuator is at the full CCW or full CW limit respectively.

While the actuator is moving in the CW direction, Bit 2 = 1. When the actuator reaches the CW end of travel limit switch, Bit 2 = 0 and Bit 4 = 1. The CW motor output is de-energized.

While the actuator is moving in the CCW direction, Bit 1 = 1. When the actuator reaches the CCW end of travel limit switch, Bit 1 = 0 and Bit 3 = 1. The CCW motor output is de-energized.

# 4.2. Potentiometer Positioning Operation

When operating with feedback potentiometer for proportional or modulating control, the TMC4 *Position Type* setting in the **POSITION CONFIG** submenu should be set to Potentiometer. In this mode, the actuator is controlled using the *Command Position* Register 40010, and the *Sensitivity/Deadband* Register 40013. Note, the deadband can also set by the on-board menus. The actual location of the actuator is indicated by the *Current Position* Register 40008.

When a new command position value is written to Register 40010, the new value is compared to the current position value in Register 40008. If the difference between the two values is greater than the sensitivity/deadband value in Register 40010, the actuator begins moving towards the new command position. When the current position value is within the limits of the command position and sensitivity/deadband value in Register 40010, the actuator is stopped.

Bit 1 and Bit 2 in Register 40001 are also used to indicate the direction of travel. If the actuator is moving in the CW direction, Bit 2 = 1. If the actuator is moving in the CCW direction, Bit 1 = 1. When the actuator reaches the command position value and is stopped, Bit 1 and Bit 2 will equal 0.

# 4.3. Obstruction or Jam Detection

When a move command is given by either setting Bit 1 and Bit 2 in Register 40009, or by writing valid value to Register 40010, a timer is immediately started. The timer continues to increment once every second. After each increment, the timer value is compared to the value set in Register 40011 for the *Travel Timeout*.

If the destination travel limit switch closes, or the position setpoint is reached before the timer value is greater than the value in Register 40011, the actuator is operating normally.

If the destination travel limit switch IS NOT closed, or the position setpoint is not reached before the timer value is greater than the value in Register 40011, a jam or obstruction has prevented the valve from operating properly. The active motor output is de-energized, and Bit 5 in Register 40001 is set.





# 5. Modbus

Installation & Operation Manual

# 5.1. Function Codes

The TMC4 Modbus RTU and TCP modules are a Modbus slave that supports the following Modbus functions.

| Code | Code<br>(hex) | Code Definition          |
|------|---------------|--------------------------|
| 03   | 0x03          | Read Holding Registers   |
| 16   | 0x10          | Write Multiple Registers |

Function 03 reads the contents of a contiguous block of holding registers. All registers, 40001-40017 are readable with this function.

Function 16 writes values into a sequence of adjacent holding registers. Only registers, 40009-40017 can be written to with this function.

# 5.2. Registers

All registers are 16 bits in length. When the register is addressed in the data communications, the register is assigned a hexadecimal value starting with 0x00. Therefore, registers numbered 40001-40017 are addressed as 0-16 in decimal, or 0x00 to 0x10 in hexadecimal resulting in the register always addressed one value below the specified decimal register number.

| Register<br>No. | Register<br>Address | Address Name                                       | 16 bit / Digital Name               | Unit | Scale | Range                                                                    | Default | Read / Write |
|-----------------|---------------------|----------------------------------------------------|-------------------------------------|------|-------|--------------------------------------------------------------------------|---------|--------------|
| 40001           | 0x00                | STATUS FLAGS 1                                     | INT                                 |      |       |                                                                          |         |              |
|                 |                     | bit 1                                              | CCW Movement                        | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 2                                              | CW Movement                         | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 3                                              | CCW Travel Limit                    | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 4                                              | CW Travel Limit                     | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 5                                              | Actuator Obstructed                 | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 6                                              | -                                   | -    | -     | -                                                                        | -       | -            |
|                 |                     | bit 7                                              | Control Mode                        | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 8                                              | Operating Mode                      | Bit  | N/A   | True/False                                                               | N/A     | Read         |
|                 |                     | bit 9-16                                           | -                                   | -    | -     | -                                                                        | -       | -            |
| 40002           | 0x01                | TOTAL POWER<br>ON TIME HI /<br>FIRMWARE<br>VERSION | INT                                 |      |       |                                                                          |         |              |
|                 |                     | bit 1-8                                            | Total Power On Time<br>(Upper Byte) | Hour | 1     | 65,536 – 16,711,680<br>(0 – 16,777,215 when used with<br>Register 40003) | 0       | Read         |
|                 |                     | bit 9-16                                           | Firmware Version                    | Int. | 1     | 0-255                                                                    | N/A     | Read         |
| 40003           | 0x02                | TOTAL POWER<br>ON TIME LO                          | INT                                 | Hour | 1     | 0 – 65,535<br>(0 – 16,777,215 when used with<br>Register 40002 bits 1-8) | 0       | Read         |





TMC4 Modbus RTU and TCP Modules

Installation & Operation Manual

| 40004 | 0x03 | TOTAL MOTOR<br>RUN TIME HI      | INT                                  |            |      |                                                                          |       |              |
|-------|------|---------------------------------|--------------------------------------|------------|------|--------------------------------------------------------------------------|-------|--------------|
|       |      | bit 1-8                         | Total Motor Run Time<br>(Upper Byte) | Count      | 1    | 65,536 – 16,711,680<br>(0 – 16,777,215 when used w<br>Register 40005)    | ith 0 | Read         |
|       |      | bit 9-16                        | -                                    | -          | -    | -                                                                        | -     | -            |
| 40005 | 0x04 | TOTAL MOTOR<br>RUN TIME LO      | INT                                  | Count      | 1    | 0 – 65,535<br>(0 – 16,777,215 when used w<br>Register 40004 bits 1-8)    | ith 0 | Read         |
| 40006 | 0x05 | TOTAL MOTOR<br>STARTS HI        | INT                                  |            |      |                                                                          |       |              |
|       |      | bit 1-8                         | Total Motor Sta<br>(Upper Byte)      | arts Count | 1    | 65,536 – 16,711,680<br>(0 – 16,777,215 when used<br>with Register 40007) | 0     | Read         |
|       |      | bit 9-16                        | -                                    | -          | -    | -                                                                        | -     | -            |
| 40007 | 0x06 | TOTAL MOTOR<br>STARTS LO        | INT                                  | Count      | 1    | 0 – 65,535<br>(0 – 16,777,215 when used<br>with Register 40006 bits 1-8) | 0     | Read         |
| 40008 | 0x07 | CURRENT<br>POSITION             | INT                                  | %          | 0.1  | 0-1000                                                                   | N/A   | Read         |
| 40009 | 0x08 | ACTION BITS /<br>STATUS FLAGS 2 | INT                                  |            |      |                                                                          |       |              |
|       |      | bit 1                           | Direction                            | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 2                           | Motor Output                         | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 3                           | Reset Actuator                       | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 4                           | -                                    | -          | -    | -                                                                        | -     | -            |
|       |      | bit 5                           |                                      |            | -    |                                                                          |       | -            |
|       |      | bit 6                           |                                      |            | -    |                                                                          |       | -            |
|       |      | bit 7<br>bit 8                  | Fault Action                         | Bit        | N/A  | 0,0 – In Place<br>0,1 – CCW<br>1,0 – CS<br>1,1 – To Position (40017)     | 0,0   | Read / Write |
|       |      | bit 9                           | Power Interrupt Flag                 | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 10                          | Reset Flag                           | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 11                          | -                                    | -          | -    | -                                                                        | -     | -            |
|       |      | bit 12                          | Save To EEPROM                       | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 13                          | Fault Flag                           | Bit        | N/A  | True/False                                                               | N/A   | Read / Write |
|       |      | bit 14                          | -                                    | -          | -    | -                                                                        | -     | -            |
|       |      | bit 15                          | -                                    | -          | -    | -                                                                        | -     | -            |
|       |      | bit 16                          | -                                    | -          | -    | -                                                                        | -     | -            |
| 40010 | 0x09 | COMMAND<br>POSITION             | INT                                  | %          | 0.1  | 0 – 1000 (Modulating)<br>0, 500, 1000 (Limit Switch)                     | N/A   | Read / Write |
| 40011 | 0x0A | TRAVEL TIMEOUT                  | INT                                  | sec        | 1    | 5 - 255                                                                  | 60    | Read / Write |
| 40012 | 0x0B | RESERVE                         | -                                    | -          | -    | -                                                                        | -     | -            |
| 40013 | 0x0C | SENSITIVITY                     | INT                                  | %          | 0.1  | 1 - 25                                                                   | 5     | Read / Write |
| 40014 | 0x0D | COMMUNICATION<br>TIMEOUT        | INT                                  | sec        | 0.01 | 100 - 10,000                                                             | 1000  | Read / Write |
| 40015 | 0x0E | RESERVE                         | -                                    | -          | -    | -                                                                        | -     | -            |
| 40016 | 0x0F | RESERVE                         | -                                    | -          | -    | -                                                                        | -     | -            |
| 40017 | 0x10 | FAULT POSITION                  | INT                                  | %          | 0.1  | 0 - 1000                                                                 | N/A   | Read / Write |





# **Status Flags 1 Register**

| Register Number  | 40001 | Unit | Scale | Range | Default |
|------------------|-------|------|-------|-------|---------|
| Register Address | 0x00  | n/a  | n/a   | n/a   | n/a     |
| Read/Write       | R     |      |       |       |         |

|     | 40001                          |  |  |  |  |  |  |    |    |    |    |    |    |    |    |
|-----|--------------------------------|--|--|--|--|--|--|----|----|----|----|----|----|----|----|
|     | Byte 2 (MSB) Byte 1 (LSB)      |  |  |  |  |  |  |    |    |    |    |    |    |    |    |
| B1( | B16 B15 B14 B13 B12 B11 B10 B9 |  |  |  |  |  |  | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 |

The Status Flags 1 register provides flags to indicate various status and operating conditions. The register bits are assigned the functionality provided below.

| Bit      | Description                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| Bit 1    | CCW Movement bit indicates if the CCW motor output terminal is energized and is used to indicate CCW movement.             |
| Bit 2    | CW Movement bit indicates if the CW motor output terminal is energized and is used to indicate CW movement.                |
| Bit 3    | CCW Travel Limit bit indicates if the open travel limit switch is closed.                                                  |
| Bit 4    | CW Travel Limit bit indicates if the close travel limit switch is closed.                                                  |
| Bit 5    | Actuator Obstruction bit indicates if the time set in the Travel Timeout register 40011 has been exceeded before the       |
|          | actuator reaches its appropriate end of travel position.                                                                   |
| Bit 6    | Not used                                                                                                                   |
| Bit 7    | Positioning Mode bit indicates if the Position Type in the menus is set to Limit Switch or Potentiometer. Limit Switch is  |
|          | for two position control using limit switches for position feedback. Potentiometer is used for proportional or modulating  |
|          | control using a potentiometer for position feedback.                                                                       |
| Bit 8    | Operating Mode bit indicates if the controller is in Run mode or Configuration mode. The controller is considered to be in |
|          | configuration mode when entering into any of the configuration submenus.                                                   |
| Bit 9-16 | Not used                                                                                                                   |

|                            |                                  |                  | Byte 1 (LSB)                    |                                         |                                                           |                                                                 |                                                                           |                                                                 |  |
|----------------------------|----------------------------------|------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Bit 8                      | Bit 7                            | Bit 6            | Bit 5                           | Bit 4                                   | Bit 3                                                     | Bit 2                                                           | Bit 1                                                                     |                                                                 |  |
| Operating<br>Mode          | Positioning<br>Mode              | -                | Obstruction                     | CW<br>Limit                             | CCW<br>Limit                                              | CW<br>Move                                                      | CCW<br>Move                                                               |                                                                 |  |
|                            | 0: Position T                    | 0: n/a<br>1: n/a | 0: No obstruc<br>1: Obstruction | 0: CW lii<br>1: CW lii<br>tion detected | 0: CCW<br>1: CCW<br>mit switch<br>mit switch<br>cted<br>d | 0: Motor<br>1: Motor<br>limit swit<br>imit swit<br>n not closed | 0: Motor<br>1: Motor<br>r CW outp<br>r CW outp<br>ch not clo<br>ch closed | CCW output not on<br>CCW output on<br>ut not on<br>ut on<br>sed |  |
|                            | 1: Position Type = Potentiometer |                  |                                 |                                         |                                                           |                                                                 |                                                                           |                                                                 |  |
| 0: Run mod<br>1: Configura | e<br>ation mode                  |                  |                                 |                                         |                                                           |                                                                 |                                                                           |                                                                 |  |

| Byte 2 (MSB) |        |        |        |       |     |     |     |  |  |  |
|--------------|--------|--------|--------|-------|-----|-----|-----|--|--|--|
| Bit 16       | Bit 15 | Bit 11 | Bit 10 | Bit 9 |     |     |     |  |  |  |
| -            | -      | -      | -      | -     | -   | -   | -   |  |  |  |
| n/a          | n/a    | n/a    | n/a    | n/a   | n/a | n/a | n/a |  |  |  |





#### Total Power On Time / Firmware

| Register Number  | 40002 / 40003 | Unit    | Scale | Range                                    | Default |
|------------------|---------------|---------|-------|------------------------------------------|---------|
| Register Address | 0x01 / 0x02   | Hour    | 1     | 0 – 16,777,216<br>0x0000000 – 0x00FFFFFF | n/a     |
| Read/Write       | R             | Version | 1     | 0 – 255<br>0x00 – 0xFF                   | n/a     |

| 400                            | 002                     | 40003                          |                         |  |  |  |  |  |
|--------------------------------|-------------------------|--------------------------------|-------------------------|--|--|--|--|--|
| Byte 2 (MSB)                   | Byte 1 (LSB)            | Byte 2 (MSB)                   | Byte 1 (LSB)            |  |  |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 | B8 B7 B6 B5 B4 B3 B2 B1 | B16 B15 B14 B13 B12 B11 B10 B9 | B8 B7 B6 B5 B4 B3 B2 B1 |  |  |  |  |  |
| Firmware Version               |                         | Total Powered On Time          |                         |  |  |  |  |  |
| 0 – 255                        | 0 – 16,777,216 (hours)  |                                |                         |  |  |  |  |  |

The *Total Power on Time/Firmware* registers store the total time (in hours) the board has been powered on as well as the current version of the firmware. The firmware version is stored in the upper 8 bits of Register 40002. The lower 8 bits of Register 40002 and all 16 bits of Register 40003 contain the 24-bit value representing the time the board has been powered on, providing for between 0 and 16,777,216 hours. This value resets when board power is removed.

When reading the registers, the 8 bits in Register 40002 represent the most significant bits of the time, while all 16 bits in Register 40003 represent the least significant bits of the time. It is recommended to read both registers with the same command. In order to extract the length of time the board has been powered on, the upper 8 bits of Register 40002 must be masked off. In order to extract the firmware version, the lower 8 bits of Register 40002 must be masked off.

# Total Motor Run Time

| Register Number  | 40004 / 40005 | 0004 / 40005 Unit |   | Range                                    | Default |
|------------------|---------------|-------------------|---|------------------------------------------|---------|
| Register Address | 0x03 / 0x04   | Hour              | 1 | 0 – 16,777,216<br>0x0000000 – 0x00FFFFFF | n/a     |
| Read/Write       | R             |                   |   |                                          |         |

| 400                            | 004                     | 40005                          |                         |  |  |  |  |
|--------------------------------|-------------------------|--------------------------------|-------------------------|--|--|--|--|
| Byte 2 (MSB)                   | Byte 1 (LSB)            | Byte 2 (MSB)                   | Byte 1 (LSB)            |  |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 | B8 B7 B6 B5 B4 B3 B2 B1 | B16 B15 B14 B13 B12 B11 B10 B9 | B8 B7 B6 B5 B4 B3 B2 B1 |  |  |  |  |
| -                              |                         | 0 – 16,777,216 (hours)         |                         |  |  |  |  |

The *Total Motor Run Time* registers store the total combined time (in hours) the CW and CCW motor outputs of the board have been energized. The lower 8 bits of Register 40004 and all 16 bits of Register 40005 contain the 24-bit value, providing for between 0 and 16,777,216 hours. This value resets when board power is removed.

When reading the registers, the 8 bits in Register 40004 represent the most significant bits of the time, while all 16 bits in Register 40005 represent the least significant bits of the time. It is recommended to read both registers with the same command.





#### **Total Motor Starts**

| Register Number  | 40006 / 40007 | Unit  | Scale | Range                                    | Default |
|------------------|---------------|-------|-------|------------------------------------------|---------|
| Register Address | 0x05 / 0x06   | Count | 1     | 0 – 16,777,216<br>0x0000000 – 0x00FFFFFF | n/a     |
| Read/Write       | R             |       |       |                                          |         |

| 40                             | 004                     | 40005                          |                         |  |  |  |  |
|--------------------------------|-------------------------|--------------------------------|-------------------------|--|--|--|--|
| Byte 2 (MSB)                   | Byte 1 (LSB)            | Byte 2 (MSB)                   | Byte 1 (LSB)            |  |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 | B8 B7 B6 B5 B4 B3 B2 B1 | B16 B15 B14 B13 B12 B11 B10 B9 | B8 B7 B6 B5 B4 B3 B2 B1 |  |  |  |  |
| -                              |                         | 0 – 16,777,216 (count)         |                         |  |  |  |  |

The *Total Motor Starts* registers store the total count for number of times the CW and CCW motor outputs of the board have been energized. The lower 8 bits of Register 40006 and all 16 bits of Register 40007 contain the 24-bit value, providing for between 0 and 16,777,216 total number of starts. This value resets when board power is removed.

When reading the registers, the 8 bits in Register 40006 represent the most significant bits of the count, while all 16 bits in Register 40007 represent the least significant bits of the count. It is recommended to read both registers with the same command.

#### **Current Position**

| Register Number  | 40008                 | Unit | Scale | Range                       | Default |
|------------------|-----------------------|------|-------|-----------------------------|---------|
| Register Address | Register Address 0x07 |      | 0.1   | 0 – 1000<br>0x0000 – 0x03E8 | n/a     |
| Read/Write       | R                     |      |       |                             |         |

|                                                        |          |  |  |  |  |      | 400  | 800 |     |  |  |  |  |  |
|--------------------------------------------------------|----------|--|--|--|--|------|------|-----|-----|--|--|--|--|--|
| Byte 2 (MSB) Byte 1 (LSB)                              |          |  |  |  |  |      |      |     |     |  |  |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 |          |  |  |  |  |      | B1   |     |     |  |  |  |  |  |
|                                                        | 0 – 1000 |  |  |  |  |      |      |     |     |  |  |  |  |  |
|                                                        |          |  |  |  |  | 0.09 | % to | 100 | .0% |  |  |  |  |  |

The *Current Position* register is used to track the current actuator position in potentiometer positioning using a feedback potentiometer. The range is automatically scaled based on the calibrated 0% and 100% positions.

The values in the register span from 0 to 1000, which corresponds to 0.0% and 100.0% respectively. With 0.0% representing a fully closed actuator, and 100.0% representing a fully open actuator, a value of 674 represents the actuators is 67.4% open.





# Action Bits/Flags 2 Register

| Register Number  | 40009 | Unit | Scale | Range | Default |
|------------------|-------|------|-------|-------|---------|
| Register Address | 0x08  | n/a  | n/a   | n/a   | n/a     |
| Read/Write       | R / W |      |       |       |         |

|     | 40009                          |  |  |  |  |  |  |    |    |    |    |    |    |    |    |
|-----|--------------------------------|--|--|--|--|--|--|----|----|----|----|----|----|----|----|
|     | Byte 2 (MSB) Byte 1 (LSB)      |  |  |  |  |  |  |    |    |    |    |    |    |    |    |
| B16 | B16 B15 B14 B13 B12 B11 B10 B9 |  |  |  |  |  |  | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 |

The Action Bits/Flags 2 register provides individual bits for multiple operation settings as well as resettable flags used to indicate various status changes.

| Bit       | Description                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| Bit 1     | Direction bit sets the direction to move the actuator when using limit switch positioning. Use this bit with Bit 2 to move |
|           | the actuator in on/off applications. The status of this bit determines which motor output is energized when Bit 2 is set.  |
| Bit 2     | Output Status bit energizes the motor output determined by Bit 1. Set the desired travel direction with Bit 1 and either   |
|           | turn on or off the motor output with this bit.                                                                             |
| Bit 3     | Reset bit resets registers 40001 (bits 1-6), 40009 (bits 1-4), 40010.                                                      |
| Bit 4-6   | Not used                                                                                                                   |
| Bit 7 & 8 | Fault Action bits determine the movement when the time between communication exceeds the Communication Timeout             |
|           | value in Register 40014. This can also be configured in the on-board menus.                                                |
| Bit 9-16  | Not used                                                                                                                   |

|                                  | Byte 1 (LSB)   |            |              |                  |                      |                              |                             |               |  |  |  |  |
|----------------------------------|----------------|------------|--------------|------------------|----------------------|------------------------------|-----------------------------|---------------|--|--|--|--|
| Bit 8                            | Bit 7          | Bit 6      | Bit 5        | Bit 4            | Bit 3                | Bit 2                        | Bit 1                       |               |  |  |  |  |
| Fault Action                     |                | -          | -            | -                | Reset                | Motor Out<br>Status          | Direction                   |               |  |  |  |  |
|                                  |                |            |              |                  |                      |                              | 0: Move C<br>1: Move C      | W<br>CW       |  |  |  |  |
|                                  |                |            |              |                  |                      | 0: Motor out<br>1: Motor out | tput not ene<br>put energiz | ergized<br>ed |  |  |  |  |
|                                  |                |            |              |                  | 0: No ef<br>1: Regis | fect<br>ter reset sen        | t                           |               |  |  |  |  |
|                                  |                |            |              | 0: n/a<br>1: n/a |                      |                              |                             |               |  |  |  |  |
|                                  |                |            | 0: n/a       |                  |                      |                              |                             |               |  |  |  |  |
|                                  |                |            | 1: n/a       |                  |                      |                              |                             |               |  |  |  |  |
|                                  |                | 0: n/a     |              |                  |                      |                              |                             |               |  |  |  |  |
|                                  |                | 1: n/a     |              |                  |                      |                              |                             |               |  |  |  |  |
| (0,0): Fail in                   | place (defaul  | t)         |              |                  |                      |                              |                             |               |  |  |  |  |
| (0,1): Fail fu<br>(1,0): Fail fu |                |            |              |                  |                      |                              |                             |               |  |  |  |  |
| (1,0): Fail to                   | position (pote | entiometer | positioning) |                  |                      |                              |                             |               |  |  |  |  |

| Byte 2 (MSB)                                         |     |     |     |     |     |     |     |  |  |  |  |  |
|------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| Bit 16 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit |     |     |     |     |     |     |     |  |  |  |  |  |
| -                                                    | -   | -   | -   | -   | -   | -   | -   |  |  |  |  |  |
| n/a                                                  | n/a | n/a | n/a | n/a | n/a | n/a | n/a |  |  |  |  |  |





#### **Command Position**

| Register Number  | 40010 | Unit | Scale | Range                                                           | Default |
|------------------|-------|------|-------|-----------------------------------------------------------------|---------|
| Register Address | 0x09  | %    | 0.1   | 0 - 1000 (32,768 - 33,768)<br>0x0000 - 0x03E8 (0x8000 - 0x83E8) | n/a     |
| Read/Write       | R/W   |      |       |                                                                 |         |

|     | 40010                                                  |  |  |  |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|     | Byte 2 (MSB) Byte 1 (LSB)                              |  |  |  |  |  |  |  |  |  |  |  |
| B16 | B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 |  |  |  |  |  |  |  |  |  |  |  |
|     | 0 - 1000                                               |  |  |  |  |  |  |  |  |  |  |  |
|     | 0.0% to 100.0%                                         |  |  |  |  |  |  |  |  |  |  |  |

If a value outside of the acceptable range of 0 to 1000 is written, the actuator will not move. When control board has power applied, or is reset using Bit 3 in Register 40009, Bit 16 is set to 1 resulting in a value of 32,768 added to the value currently in the register. Setting Bit 16 forces the *Command Position* register value outside of the acceptable 0 to 1000 range and therefore prevents the actuator from moving. The actuator can be controlled again by writing another value between 0 and 1000.

The *Command Position* register is used to initiate an actuator move. When the board is configured for potentiometer positioning, the values span from 0 to 1000, corresponding to 0.0% and 100.0% respectively. Therefore, with 0.0% representing a fully closed actuator, and 100.0% representing a fully open actuator, a written value of 674 indicates a command to move the actuator to 67.4% open.

When the board is set to limit switch positioning, a 0 will move the actuator CW, a 500 will stop the actuator, and 1000 will move the actuator CCW.

| Value | Description                                    | Register 40009 bit equivalent |
|-------|------------------------------------------------|-------------------------------|
| 0     | Energize motor outputs and drive actuator CW.  | Bit 1 = 0, Bit 2 = 1          |
| 500   | De-energize motor outputs and stop actuator.   | Bit $1 = x$ , Bit $2 = 0$     |
| 1000  | Energize motor outputs and drive actuator CCW. | Bit 1 = 1, Bit 2 = 1          |

#### **Travel Timeout**

| Register Number  | 40011 | Unit   | Scale | Range                      | Default |
|------------------|-------|--------|-------|----------------------------|---------|
| Register Address | 0x0A  | Second | 1     | 5 – 255<br>0x0005 – 0x00FF | 60      |
| Read/Write       | R/W   |        |       |                            |         |

|                                                        | 40011                     |  |  |   |      |      |       |     |     |     |   |  |  |  |  |
|--------------------------------------------------------|---------------------------|--|--|---|------|------|-------|-----|-----|-----|---|--|--|--|--|
|                                                        | Byte 2 (MSB) Byte 1 (LSB) |  |  |   |      |      |       |     |     |     |   |  |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 |                           |  |  |   |      |      |       |     | B1  |     |   |  |  |  |  |
|                                                        | 5 – 255                   |  |  |   |      |      |       |     |     |     |   |  |  |  |  |
|                                                        |                           |  |  | 5 | 5 Se | cond | ls to | 255 | Sec | ond | S |  |  |  |  |

The *Travel Timeout* register is to determine a stall or obstruction condition identified by Bit 5 in Register 40001. The value stored in this register represents the maximum time allowed between energizing a motor output and reaching the command position or limit before identifying an obstruction. This value should typically be set greater than the normal travel time of the actuator from full open to full close.

Values in this register can be between 5 and 255 with each integer representing 1 second. The default value is set to 60 representing a time of 60 seconds.





#### Reserved

| Register Number  | 40012 | Unit | Scale | Range | Default |
|------------------|-------|------|-------|-------|---------|
| Register Address | 0x0B  | n/a  | n/a   | n/a   | n/a     |
| Read/Write       | R / W |      |       |       |         |

This register is currently not used.

#### Sensitivity/Deadband

| Register Number  | 40013 | Unit | Scale | Range                     | Default |
|------------------|-------|------|-------|---------------------------|---------|
| Register Address | 0x0C  | %    | 0.1   | 1 – 25<br>0x0001 – 0x0019 | 5       |
| Read/Write       | R / W |      |       |                           |         |

|                                                        | 40013        |  |  |  |  |  |     |    |  |  |  |  |  |  |  |
|--------------------------------------------------------|--------------|--|--|--|--|--|-----|----|--|--|--|--|--|--|--|
| Byte 2 (MSB) Byte 1 (LSB)                              |              |  |  |  |  |  |     |    |  |  |  |  |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 |              |  |  |  |  |  |     |    |  |  |  |  |  |  |  |
|                                                        |              |  |  |  |  |  | 1 – | 25 |  |  |  |  |  |  |  |
|                                                        | 1.0% to 2.5% |  |  |  |  |  |     |    |  |  |  |  |  |  |  |

The Sensitivity/Deadband register stores the necessary change between the value written to Register 40010 and the current value in Register 40008 before an actuator movement is initiated. It also represents the range outside of the setpoint the actuator will stop.

Values in this register can be between 1 and 25 with each integer representing 0.1%. The default value is set to 5 representing 0.5%. Using the default value of 0.5%, if the actuator position is at 50.0%, indicated by a value of 500 in Register 40008, the value written to Register 40010 must be greater than 505 or less than 495.

#### **Communication Timeout**

| Register Number  | 40014 | Unit   | Scale | Range                           | Default |
|------------------|-------|--------|-------|---------------------------------|---------|
| Register Address | 0x0D  | Second | 0.01  | 100 – 10,000<br>0x0064 – 0x2710 | 1000    |
| Read/Write       | R / W |        |       |                                 |         |

|                                                       | 40014                      |  |  |  |  |  |  |    |  |  |  |
|-------------------------------------------------------|----------------------------|--|--|--|--|--|--|----|--|--|--|
|                                                       | Byte 2 (MSB) Byte 1 (LSB)  |  |  |  |  |  |  |    |  |  |  |
| B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B |                            |  |  |  |  |  |  | B1 |  |  |  |
|                                                       | 100 – 10,000               |  |  |  |  |  |  |    |  |  |  |
|                                                       | 0.1 Seconds to 100 Seconds |  |  |  |  |  |  |    |  |  |  |

The *Communication Timeout* register stores the maximum time allowed with no communication received from the master device before entering a fault condition. When this time is exceeded, the actuator will move to the position set by Bit 7 and Bit 8 in Register 40009. The master should communicate with each actuator on the bus within the time set in this register. Doing so will ensure the actuator moves to the fault position determined by Bit 7 and Bit 8 in Register 40009 only when an unintended lapse in communication is encountered.

Values in this register can be between 100 and 10,000 with each integer representing 0.01 seconds. The default value is set to 1000 representing 10 seconds.





#### Reserved

| Register Number  | 40015 | Unit | Scale | Range | Default |
|------------------|-------|------|-------|-------|---------|
| Register Address | 0x0E  | n/a  | n/a   | n/a   | n/a     |
| Read/Write       | R / W |      |       |       |         |

This register is currently not used.

#### Reserved

| Register Number  | 40016 | Unit | Scale | Range | Default |
|------------------|-------|------|-------|-------|---------|
| Register Address | 0x0F  | n/a  | n/a   | n/a   | n/a     |
| Read/Write       | R / W |      |       |       |         |

This register is currently not used.

#### **Fault Position**

| Register Number  | 40017 | Unit | Scale | Range                       | Default |
|------------------|-------|------|-------|-----------------------------|---------|
| Register Address | 0x10  | %    | 0.01  | 0 – 1000<br>0x0000 – 0x03E8 | n/a     |
| Read/Write       | R/W   |      |       |                             |         |

| 40017        |                |    |     |     |     |     |              |    |    |    |    |    |    |    |    |    |
|--------------|----------------|----|-----|-----|-----|-----|--------------|----|----|----|----|----|----|----|----|----|
| Byte 2 (MSB) |                |    |     |     |     |     | Byte 1 (LSB) |    |    |    |    |    |    |    |    |    |
| B16          | B15            | БВ | 314 | B13 | B12 | B11 | B10          | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 |
| 0 – 1000     |                |    |     |     |     |     |              |    |    |    |    |    |    |    |    |    |
|              | 0.0% to 100.0% |    |     |     |     |     |              |    |    |    |    |    |    |    |    |    |

The *Fault Position* register is used in potentiometer positioning to set a position to move the actuator for a fault condition. The values in the register span from 0 to 1000, which corresponds to 0.0% and 100.0% respectively. With 0.0% representing a fully closed actuator, and 100.0% representing a fully open actuator, a value of 674 represents the actuator will fail to the 67.4% open position either from fault condition.

Failing to the position specified in this register when a fault condition occurs is achieved by setting both Bit 7 and Bit 8 in Register 40009 high.





# Appendix A

# Number System Conversion

Installation & Operation Manual

| DEC | ост | HEX | BIN       |
|-----|-----|-----|-----------|-----|-----|-----|-----------|-----|-----|-----|-----------|-----|-----|-----|-----------|
| 0   | 000 | 00  | 0000 0000 | 16  | 020 | 10  | 0001 0000 | 32  | 040 | 20  | 0010 0000 | 48  | 060 | 30  | 0011 0000 |
| 1   | 001 | 01  | 0000 0001 | 17  | 021 | 11  | 0001 0001 | 33  | 041 | 21  | 0010 0001 | 49  | 061 | 31  | 0011 0001 |
| 2   | 002 | 02  | 0000 0010 | 18  | 022 | 12  | 0001 0010 | 34  | 042 | 22  | 0010 0010 | 50  | 062 | 32  | 0011 0010 |
| 3   | 003 | 03  | 0000 0011 | 19  | 023 | 13  | 0001 0011 | 35  | 043 | 23  | 0010 0011 | 51  | 063 | 33  | 0011 0011 |
| 4   | 004 | 04  | 0000 0100 | 20  | 024 | 14  | 0001 0100 | 36  | 044 | 24  | 0010 0100 | 52  | 064 | 34  | 0011 0100 |
| 5   | 005 | 05  | 0000 0101 | 21  | 025 | 15  | 0001 0101 | 37  | 045 | 25  | 0010 0101 | 53  | 065 | 35  | 0011 0101 |
| 6   | 006 | 06  | 0000 0110 | 22  | 026 | 16  | 0001 0110 | 38  | 046 | 26  | 0010 0110 | 54  | 066 | 36  | 0011 0110 |
| 7   | 007 | 07  | 0000 0111 | 23  | 027 | 17  | 0001 0111 | 39  | 047 | 27  | 0010 0111 | 55  | 067 | 37  | 0011 0111 |
| 8   | 010 | 08  | 0000 1000 | 24  | 030 | 18  | 0001 1000 | 40  | 050 | 28  | 0010 1000 | 56  | 070 | 38  | 0011 1000 |
| 9   | 011 | 09  | 0000 1001 | 25  | 031 | 19  | 0001 1001 | 41  | 051 | 29  | 0010 1001 | 57  | 071 | 39  | 0011 1001 |
| 10  | 012 | 0A  | 0000 1010 | 26  | 032 | 1A  | 0001 1010 | 42  | 052 | 2A  | 0010 1010 | 58  | 072 | 3A  | 0011 1010 |
| 11  | 013 | OB  | 0000 1011 | 27  | 033 | 1B  | 0001 1011 | 43  | 053 | 2B  | 0010 1011 | 59  | 073 | 3B  | 0011 1011 |
| 12  | 014 | 0C  | 0000 1100 | 28  | 034 | 1C  | 0001 1100 | 44  | 054 | 2C  | 0010 1100 | 60  | 074 | 3C  | 0011 1100 |
| 13  | 015 | 0D  | 0000 1101 | 29  | 035 | 1D  | 0001 1101 | 45  | 055 | 2D  | 0010 1101 | 61  | 075 | 3D  | 0011 1101 |
| 14  | 016 | 0E  | 0000 1110 | 30  | 036 | 1E  | 0001 1110 | 46  | 056 | 2E  | 0010 1110 | 62  | 076 | 3E  | 0011 1110 |
| 15  | 017 | OF  | 0000 1111 | 31  | 037 | 1F  | 0001 1111 | 47  | 057 | 2F  | 0010 1111 | 63  | 077 | 3F  | 0011 1111 |
| 64  | 100 | 40  | 0100 0000 | 80  | 120 | 50  | 0101 0000 | 96  | 140 | 60  | 0110 0000 | 112 | 160 | 70  | 0111 0000 |
| 65  | 101 | 41  | 0100 0001 | 81  | 121 | 51  | 0101 0001 | 97  | 141 | 61  | 0110 0001 | 113 | 161 | 71  | 0111 0001 |
| 66  | 102 | 42  | 0100 0010 | 82  | 122 | 52  | 0101 0010 | 98  | 142 | 62  | 0110 0010 | 114 | 162 | 72  | 0111 0010 |
| 67  | 103 | 43  | 0100 0011 | 83  | 123 | 53  | 0101 0011 | 99  | 143 | 63  | 0110 0011 | 115 | 163 | 73  | 0111 0011 |
| 68  | 104 | 44  | 0100 0100 | 84  | 124 | 54  | 0101 0100 | 100 | 144 | 64  | 0110 0100 | 116 | 164 | 74  | 0111 0100 |
| 69  | 105 | 45  | 0100 0101 | 85  | 125 | 55  | 0101 0101 | 101 | 145 | 65  | 0110 0101 | 117 | 165 | 75  | 0111 0101 |
| 70  | 106 | 46  | 0100 0110 | 86  | 126 | 56  | 0101 0110 | 102 | 146 | 66  | 0110 0110 | 118 | 166 | 76  | 0111 0110 |
| 71  | 107 | 47  | 0100 0111 | 87  | 127 | 57  | 0101 0111 | 103 | 147 | 67  | 0110 0111 | 119 | 167 | 77  | 0111 0111 |
| 72  | 110 | 48  | 0100 1000 | 88  | 130 | 58  | 0101 1000 | 104 | 150 | 68  | 0110 1000 | 120 | 170 | 78  | 0111 1000 |
| 73  | 111 | 49  | 0100 1001 | 89  | 131 | 59  | 0101 1001 | 105 | 151 | 69  | 0110 1001 | 121 | 171 | 79  | 0111 1001 |
| 74  | 112 | 4A  | 0100 1010 | 90  | 132 | 5A  | 0101 1010 | 106 | 152 | 6A  | 0110 1010 | 122 | 172 | 7A  | 0111 1010 |
| 75  | 113 | 4B  | 0100 1011 | 91  | 133 | 5B  | 0101 1011 | 107 | 153 | 6B  | 0110 1011 | 123 | 173 | 7B  | 0111 1011 |
| 76  | 114 | 4C  | 0100 1100 | 92  | 134 | 5C  | 0101 1100 | 108 | 154 | 6C  | 0110 1100 | 124 | 174 | 7C  | 0111 1100 |
| 77  | 115 | 4D  | 0100 1101 | 93  | 135 | 5D  | 0101 1101 | 109 | 155 | 6D  | 0110 1101 | 125 | 175 | 7D  | 0111 1101 |
| 78  | 116 | 4E  | 0100 1110 | 94  | 136 | 5E  | 0101 1110 | 110 | 156 | 6E  | 0110 1110 | 126 | 176 | 7E  | 0111 1110 |
| 79  | 117 | 4F  | 0100 1111 | 95  | 137 | 5F  | 0101 1111 | 111 | 157 | 6F  | 0110 1111 | 127 | 177 | 7F  | 0111 1111 |





TMC4 Modbus RTU and TCP Modules

|     |     |     |           |     |     |     |           |     |     |     |           | Installation & Operation Manua |     |     |           |  |  |
|-----|-----|-----|-----------|-----|-----|-----|-----------|-----|-----|-----|-----------|--------------------------------|-----|-----|-----------|--|--|
| DEC | ОСТ | HEX | BIN       | DEC | ОСТ | HEX | BIN       | DEC | ОСТ | HEX | BIN       | DEC                            | ОСТ | HEX | BIN       |  |  |
| 128 | 200 | 80  | 1000 0000 | 144 | 220 | 90  | 1001 0000 | 160 | 240 | A0  | 1010 0000 | 176                            | 260 | BO  | 1011 0000 |  |  |
| 129 | 201 | 81  | 1000 0001 | 145 | 221 | 91  | 1001 0001 | 161 | 241 | A1  | 1010 0001 | 177                            | 261 | B1  | 1011 0001 |  |  |
| 130 | 202 | 82  | 1000 0010 | 146 | 222 | 92  | 1001 0010 | 162 | 242 | A2  | 1010 0010 | 178                            | 262 | B2  | 1011 0010 |  |  |
| 131 | 203 | 83  | 1000 0011 | 147 | 223 | 93  | 1001 0011 | 163 | 243 | A3  | 1010 0011 | 179                            | 263 | B3  | 1011 0011 |  |  |
| 132 | 204 | 84  | 1000 0100 | 148 | 224 | 94  | 1001 0100 | 164 | 244 | A4  | 1010 0100 | 180                            | 264 | B4  | 1011 0100 |  |  |
| 133 | 205 | 85  | 1000 0101 | 149 | 225 | 95  | 1001 0101 | 165 | 245 | A5  | 1010 0101 | 181                            | 265 | B5  | 1011 0101 |  |  |
| 134 | 206 | 86  | 1000 0110 | 150 | 226 | 96  | 1001 0110 | 166 | 246 | A6  | 1010 0110 | 182                            | 266 | B6  | 1011 0110 |  |  |
| 135 | 207 | 87  | 1000 0111 | 151 | 227 | 97  | 1001 0111 | 167 | 247 | A7  | 1010 0111 | 183                            | 267 | B7  | 1011 0111 |  |  |
| 136 | 210 | 88  | 1000 1000 | 152 | 230 | 98  | 1001 1000 | 168 | 250 | A8  | 1010 1000 | 184                            | 270 | B8  | 1011 1000 |  |  |
| 137 | 211 | 89  | 1000 1001 | 153 | 231 | 99  | 1001 1001 | 169 | 251 | A9  | 1010 1001 | 185                            | 271 | B9  | 1011 1001 |  |  |
| 138 | 212 | 8A  | 1000 1010 | 154 | 232 | 9A  | 1001 1010 | 170 | 252 | AA  | 1010 1010 | 186                            | 272 | BA  | 1011 1010 |  |  |
| 139 | 213 | 8B  | 1000 1011 | 155 | 233 | 9B  | 1001 1011 | 171 | 253 | AB  | 1010 1011 | 187                            | 273 | BB  | 1011 1011 |  |  |
| 140 | 214 | 8C  | 1000 1100 | 156 | 234 | 9C  | 1001 1100 | 172 | 254 | AC  | 1010 1100 | 188                            | 274 | BC  | 1011 1100 |  |  |
| 141 | 215 | 8D  | 1000 1101 | 157 | 235 | 9D  | 1001 1101 | 173 | 255 | AD  | 1010 1101 | 189                            | 275 | BD  | 1011 1101 |  |  |
| 142 | 216 | 8E  | 1000 1110 | 158 | 236 | 9E  | 1001 1110 | 174 | 256 | AE  | 1010 1110 | 190                            | 276 | BE  | 1011 1110 |  |  |
| 143 | 217 | 8F  | 1000 1111 | 159 | 237 | 9F  | 1001 1111 | 175 | 257 | AF  | 1010 1111 | 191                            | 277 | BF  | 1011 1111 |  |  |
| 192 | 300 | C0  | 1100 0000 | 208 | 320 | D0  | 1101 0000 | 224 | 340 | EO  | 1110 0000 | 240                            | 360 | FO  | 1111 0000 |  |  |
| 193 | 301 | C1  | 1100 0001 | 209 | 321 | D1  | 1101 0001 | 225 | 341 | E1  | 1110 0001 | 241                            | 361 | F1  | 1111 0001 |  |  |
| 194 | 302 | C2  | 1100 0010 | 210 | 322 | D2  | 1101 0010 | 226 | 342 | E2  | 1110 0010 | 242                            | 362 | F2  | 1111 0010 |  |  |
| 195 | 303 | C3  | 1100 0011 | 211 | 323 | D3  | 1101 0011 | 227 | 343 | E3  | 1110 0011 | 243                            | 363 | F3  | 1111 0011 |  |  |
| 196 | 304 | C4  | 1100 0100 | 212 | 324 | D4  | 1101 0100 | 228 | 344 | E4  | 1110 0100 | 244                            | 364 | F4  | 1111 0100 |  |  |
| 197 | 305 | C5  | 1100 0101 | 213 | 325 | D5  | 1101 0101 | 229 | 345 | E5  | 1110 0101 | 245                            | 365 | F5  | 1111 0101 |  |  |
| 198 | 306 | C6  | 1100 0110 | 214 | 326 | D6  | 1101 0110 | 230 | 346 | E6  | 1110 0110 | 246                            | 366 | F6  | 1111 0110 |  |  |
| 199 | 307 | C7  | 1100 0111 | 215 | 327 | D7  | 1101 0111 | 231 | 347 | E7  | 1110 0111 | 247                            | 367 | F7  | 1111 0111 |  |  |
| 200 | 310 | C8  | 1100 1000 | 216 | 330 | D8  | 1101 1000 | 232 | 350 | E8  | 1110 1000 | 248                            | 370 | F8  | 1111 1000 |  |  |
| 201 | 311 | C9  | 1100 1001 | 217 | 331 | D9  | 1101 1001 | 233 | 351 | E9  | 1110 1001 | 249                            | 371 | F9  | 1111 1001 |  |  |
| 202 | 312 | CA  | 1100 1010 | 218 | 332 | DA  | 1101 1010 | 234 | 352 | EA  | 1110 1010 | 250                            | 372 | FA  | 1111 1010 |  |  |
| 203 | 313 | СВ  | 1100 1011 | 219 | 333 | DB  | 1101 1011 | 235 | 353 | EB  | 1110 1011 | 251                            | 373 | FB  | 1111 1011 |  |  |
| 204 | 314 | CC  | 1100 1100 | 220 | 334 | DC  | 1101 1100 | 236 | 354 | EC  | 1110 1100 | 252                            | 374 | FC  | 1111 1100 |  |  |
| 205 | 315 | CD  | 1100 1101 | 221 | 335 | DD  | 1101 1101 | 237 | 355 | ED  | 1110 1101 | 253                            | 375 | FD  | 1111 1101 |  |  |
| 206 | 316 | CE  | 1100 1110 | 222 | 336 | DE  | 1101 1110 | 238 | 356 | EE  | 1110 1110 | 254                            | 376 | FE  | 1111 1110 |  |  |
| 207 | 317 | CF  | 1100 1111 | 223 | 337 | DF  | 1101 1111 | 239 | 357 | EF  | 1110 1111 | 255                            | 377 | FF  | 1111 1111 |  |  |





# Appendix B

#### ModbusTCP Configuration via Terminal Program

The IP settings for the TMC4 with ModbusTCP module can be configured using the standard on-board menus. However, the TMC4 can also be configured using a computer terminal interface program through the USB connection. Note the ModbusTCP is only compatible with firmware versions 2.03 and later.

- 1. Install ModbusTCP module in the TMC4 module slot.
- 2. Power on the TMC4.



- 3. Set the command type to "Comms" and ensure the communication type is set for ModbusTCP.
- 4. Configure the IP settings to match the user network via USB to the TMC4 micro USB connection.
  - a. Connect USB to micro USB cable between TMC4 and PC.
  - b. Once new serial port is assigned to the TMC4, open a terminal program (TeraTerm, Putty, etc.) under the newly assigned comm port with parameters: 115200-8-N-1
  - c. In the terminal, type "help" to see the available commands





| 🧧 COM10 - Tera Term VT                                                                                                                                                                                                                                                                                                                                                                                                                       | _ | ×      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|
| File Edit Setup Control Window Help                                                                                                                                                                                                                                                                                                                                                                                                          |   |        |
| help<br>help: Lists all the registered commands<br>getrms: Get the current RMS for Voltage and Current<br>log: Trigger OM/OFF log feature<br>restart: Restart system<br>ipget: Get IP configuration<br>ipset ip1 ip2 ip3 ip4: Set IP Address ip1.ip2.ip3.ip4<br>subset sb1 sb2 sb3 sb4: Set Subnet Mask sb1.sb2.sb3.sb4<br>gwset gw1 gw2 gw3 gw4: Set Gateway Address gw1.gw2.gw3.gw4<br>IPress ENTER to execute the previous command again] |   | ^      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | $\sim$ |

- 5. To read the current IP settings, type "ipget"
- 6. To set IP address, type "ipset 192 168 0 101" to set IP address to 192.168.0.101
- 7. To set subnet mask, type "subset 255 255 255 0" to set mask to 255.255.255.0
- 8. To set gateway IP, type "gwset 192 168 0 1" to set gateway to 192.168.0.1
- 9. The TMC4 confirms the change is successful after each command.

| 🔟 Tera Term - [disconnected] VT — 🗆                                                                                                          | × |        |
|----------------------------------------------------------------------------------------------------------------------------------------------|---|--------|
| File Edit Setup Control Window Help                                                                                                          |   |        |
| gwset gw1 gw2 gw3 gw4: Set Gateway Address gw1.gw2.gw3.gw4                                                                                   | ^ | 1      |
| [Press ENTER to execute the previous command again]<br>IP Address: 0.0.0.0<br>Subnet Mask : 0.0.0.0<br>Default Gateway : 0.0.0.0             |   |        |
| [Press ENTER to execute the previous command again]<br>Incorrect command parameter(s). Enter "help" to view a list of available comma<br>ds. | I |        |
| [Press ENTER to execute the previous command again]<br>Set IP Successful. 1<br>Notice: To apply new configuration, please restart system     |   | ad (1) |
| [Press ENTER to execute the previous command again]<br>Set Subnet Successful.                                                                |   | 8      |
| [Press ENTER to execute the previous command again]<br>Sysset 192 168 0 1                                                                    |   | 2      |
| Set Gateway Successful.<br>[Press ENTER to execute the previous command again]<br>>                                                          | ~ |        |

- 10. Cycle power to the TMC4 to complete configuration of the new network settings.
- 11. TMC4 is now ready for ModbusTCP communications. Use a ModbusTCP master with the IP set as per above and use TCP port 502.





A-T Controls product, when properly selected, is designed to perform its intended function safely during its useful life. However, the purchaser or user of A-T Controls products should be aware that A-T Controls products might be used in numerous applications under a wide variety of industrial service conditions. Although A-T Controls can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser / user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of A-T Controls products. The user should read and understand the installation operation maintenance (IOM) instructions included with the product and train its employees and contractors in the safe use of A-T Controls products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only. Because A-T Controls is continually improving and upgrading its product design, the specifications, dimensions and information contained in this literature are subject to change without notice. Should any question arise concerning these specifications, the purchaser/user should contact A-T Controls.

For product specifications go to http://download.a-tcontrols.com/

A-T Controls, Inc. • 9955 International Boulevard, Cincinnati, OH 45246 • Phone: (513) 530-5175 • Fax: (513) 247-5462 • www.atcontrols.com

